
PGI® Compilers
for Cray XT5 Systems

Dave Norton
The Portland Group

Dave.Norton@pgroup.com

ORNL User Group Conference

10 March 11

Craig Toepfer
The Portland Group

Craig.Toepfer@pgroup.com

  C, C++, F2003 compilers

  Optimizing, Vectorizing, Parallelizing

  Graphical parallel debugger, profiler

  AMD & Intel, 32 & 64-bit, SSE & AVX

  PGI Unified Binary™ technology

  Linux, MacOS, Windows

  Visual Studio integration on Windows

  CUDA Fortran for NVIDIA GPUs

  CUDA C for both X86 and NVIDIA

  PGI Accelerator™ Programming Model
www.pgroup.com

PGI Milestones

•  1989 PGI Formed
•  1991 Pipelining i860

Compiler
•  Intel Paragon support
•  1994 Parallel i860 Compiler
•  1996 ASCI Red TFLOPS

Compiler
•  1997 Linux/x86 Compiler
•  1998 OpenMP for Linux/x86
•  1999 SSE/SIMD Auto-

vectorization
•  2001 VLIW ST100 Compiler

•  2003 64-bit Linux/x86
Compiler

•  2004 ASCI Red Storm
Compiler

•  2005 PGI Unified Binary
•  2006 PGI Visual Fortran
•  2007 64-bit MacOS Compiler
•  2008 PGI Accelerator

Compiler
•  2009 CUDA Fortran
•  2011 CUDA C for x64 and

MIC

PGI® 2011 Features
  PGI Accelerator™ Programming Model

  High-level, Portable, Directive-based Fortran & C extensions (no C++, yet)
  Supported on NVIDIA CUDA GPUs

  PGI CUDA Fortran
  Extended PGI Fortran, co-defined by PGI and NVIDIA
  Lower-level explicit NVIDIA CUDA GPU programming

  PGI CUDA C for x64 and MIC
  Demonstration of CUDA C for x64 at SC 2010 in New Orleans
  Mixing of CUDA C, CUDA Fortran and PGI Accelerator directives

  Compiler Enhancements
  F2003 – object oriented features
  Latest EDG 4.1 C++ front-end – more g++/VC++ compatible, zero cost

exception handling (-zc_eh)
  AVX code generation, code generator tuning

  PGPROF Enhancements
  Uniform performance profiling across Linux, MacOS and Windows
  x64+GPU performance profiling
  Updated Graphical User Interface (GUI)

PGI is the default compiler on the XT5 systems.

Cray supplies wrappers to all of the compilers on the system so that the
Fortran compiler is always invoked as “ftn”, the C compiler as “cc”, and C
++ as “CC” regardless of the actual compile vendor being used.

> module list

 pgi/11.2.0

> ftn -V foo.f -o foo

 pgfortran 11.2-0 64-bit target on Linux -tp barcelona-64

Compiling codes with PGI

Or you can call the compiler directly with “pgfortran” but you won’t get
the Cray library wrappers for use in the XT5 system

On the Cray, to change the version of the PGI compiler, you need to switch
modules:

> module switch pgi/11.2.0 pgi/10.2.0

> ftn -V foo.f -o foo

 pgf90 10.2-0 64-bit target on Linux -tp barcelona

On your workstation, if you have multiple versions of PGI installed, you can
invoke a different version of the compiler through the compile driver:

> pgfortran -V10.2 hello.f -o hello

 pgfortran 10.2-0 64-bit target on Linux -tp istanbul-64

Using a different version of PGI

The PGI compile driver by default compiles for the processor on which the
compilation takes place. The driver allows you to easily cross compile for
another target processor:

> pgfortran -V foo.f -o foo -tp istanbul-64

 pgfortran 11.2-0 64-bit target on Linux -tp istanbul-64

At the request of Cray users at ORNL - new to 11.2 – you can set the target
processor in your ~/.mypgirc or the siterc file. This can then be overridden
with the –tp flag on the command line (Cray still needs to change compile scrips):

set PREOPTIONS=-tp=barcelona-64

Then override on the commandline:

> ftn -V foo.o -o foo -tp istanbul-64

Changing target processors

pgfortran 11.2-0 64-bit target on Linux -tp istanbul-64

Why change the target processor?

You intend to run on a processor different then the default. (On JaguarPF,
you are actually cross compiling for the istanbul-64 processor)

The target system has more then one CPU type on it. Suppose JaguarEF
contains both AMD and Intel CPUs.

> ftn –V –tp sandybridge-64,bulldozer-64

pgfortran 11.2-0 64-bit target on Linux -tp sandybridge-64,bulldozer-64

The creates a PGI Unified Binary which contains optimized code for the
sandybridge chip and optimized code for the bulldozer chip in the same
binary. At run time, the system determines the processor it is running on
and selects that code branch, thus allowing a single executable to run on an
heterogeneous target architecture.

Changing target processors

OK, OK – I have the best compilers on the world’s best computer. What
should I do to get my code compiled and start computing?

I’m in a hurry – how do I start?

> ftn -fast foo.f -o foo

Invoking the compiler with the –fast (or –fastsse) flag sets common
optimizations which include:

 -O2
 -Munroll=c:1
 -Mnoframe (gives the compiler another register)
 -Mlre
 -Mautoinline
 -Mvect=sse <= this is the vectorizer
 -Mscalarsse
 -Mcache_align
 -Mflushz
 -Mpre

Recommended optimization

Yes! PGI recommends that you use the –Minfo=ccff flag for all
compiles.

-Minfo instructs the compiler to print out informative messages during the
compilation stage.

-Minfo=ccff instructs the compiler to also imbed these informative
messages in the executable itself. When you use the profiler, you can then
coordinate performance information with source code lines and the
compiler messages emitted when compiling that line of code.

Can PGI help profile my code?

Cray provides some excellent tools for profiling using hardware counters.

PGI also provides some excellent tools for profiling of code. The simplest
method is to use pgcollect. No special build process is needed, although
compiling with –Minfo=ccff may provide useful feedback. This imbeds the
–Minfo messages into the executable which can then be viewed with the
performance profile.

Run your code as:

> pgcollect a.out

Then view the results with the GUI tool - pgprof

> pgprof -exe a.out

Profiling code

To get a general profile for an MPI code, you may wish to just profile
one of the MPI processes. Instead of launching the executable via mpiexec,
launch a script which launches the executable instead:

 > mpiexec -np 2000 ./doit  

The “doit” script for code compiled and linked with MPICH2 might look like
the following:

#!/bin/csh  

if ($PMI_RANK == 0) then  
 pgcollect ./test  
else  
 ./test  
endif  

After the run is complete, there will be only one pgprof.out file which can be
viewed using:
> pgprof -exe ./test pgprof.out

Profiling code

Yes! The PGI Fortran 11.0 compiler supports Fortran 2003.

Fortran 2003 requires that the Fortran STOP message signal all IEEE
exceptions.

Be default Cray will disable to capability so you don’t get messages from
each and every MPI process. (export NO_STOP_MESSAGE=1)

To re-enable it: unset NO_STOP_MESSAGE

You will almost always see:

Warning: ieee_inexact is signaling

Of more concern are other messages like:

Warning: ieee_divide_by_zero is signaling

Can the runtime help catch errors?

Scalar code produces one result for each assembly language instruction

Vector code produces multiple results – depending on the vector length of
the target processor – for each assembly language instruction.

Processor 32 bit vector length 64 bit vector length

Barcelona 4 2

Istanbul 4 2

Bulldozer 8 4

Sandybridge 8 4

MIC 16 8

NextGen 32 16

Scalar, vector – what’s the difference?

Vectorization is the key to getting the best performance out of floating point
intense codes. Current processors are capable of operating on 128 bits at a
time. This means they can do 2 – double precision operations or 4 – single
precision operations at the same time – as long as those operations can all be
described by a single instruction (i.e. a vector operation).

AVX – coming by the end of the year, increases this to 256 bit wide units

The vectorizer performs the following operations:
 Loop interchange and loop splitting
 Loop fusion
 Memory-hierarchy (cache tiling) optimizations
 Generation of SSE instructions and prefetch instructions
 Loop peeling to maximize vector alignment
 Alternate code generation

Basic levels of vector optimization

There are several common coding issues that may prevent vectorization.
The programmer may have enough knowledge to provide additional
information to the compiler to work around these issues.

In C and C++ the compiler may not have enough information about the
pointers passed into a subroutine to be able to determine that those pointers
don’t overlap. (-Msafeptr option or pragma or restrict keyword)

Function calls can be inlined to allow vectorization (-Minline)

Constants may be of the wrong type (-Mfcon)

Loops may be too long or too short. In both cases, additional options to the
vectorizer may be successful in generating vector code.

Common impediments to vector
optimization

18

-Msafeptr Option and Pragma

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

> ftn foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 1 if –g is not specified.

> ftn -g foo.f -o foo

Invoking the compiler with no flags for optimization will set the scalar
optimization level to 0 if –g is specified.

> ftn -O foo.o -o foo

Invoking the compiler with the -O flag for optimization will set the scalar
optimization level to 2 regardless of whether –g is also specified.

 Optimization levels O0 through O4 perform increasing aggressive scalar
optimizations

Basic levels of scalar optimization

If you are just starting with a new code, we suggest that you try a short run
of the code with optimization level –O2.

If the answers look good, then try the same run with the –fast flag.

If the answers are the same as the first run, use –fast as the basis for further
optimizations. If the answers differ, try turning of optimizations one at a
time until you find the optimization that is causing the difference. You can
then track down in your code where that difference occurs and determine if
it can be fixed, or if the optimization needs to be left turned off.

Which level of optimization to start?

Optimization flags are processed on the command line in the order in which
they occur. For example - to turn on all –fast optimizations except loop
redundant elimination:

> ftn -fast -Mnolre foo.o -o foo

Most optimizations can be turned on with the syntax –Moptimization

Most optimizations can be turned off with the syntax -Mnooptimization

Turning off optimizations

Optimizations and debugging don’t always go hand in hand, however...

> ftn -fast -gopt foo.f -o foo

-gopt inserts debugging information without disabling optimizations. It is
often helpful for tracking down a code bug that only appears in optimized
code, or a bug that occurs far enough into a code that running the code with
no optimizations takes a painful amount of time.

Optimizations and debugging

Generating tracebacks
Linux uses the backtrace system call to create the stacktrace when a fault or error
occurs. The only requirement is to link with the -Meh_frame option:
 > pgfortran -Meh_frame -o x x.f90

Then before running the program, the following environment variable is set as
follows:

> export PGI_TERM=trace  

Generating tracebacks
Here is a sample traceback from within the PGI runtime.
(An attempt to deallocate an allocatable array more than one time):
0: DEALLOCATE: memory at (nil) not allocated  
 ./x(__hpf_abort+0x7d) [0x40bb8d]  
 ./x(__hpf_dealloc+0xeb) [0x40b57b]  
 ./x(MAIN_+0x217) [0x408177]  
 ./x(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2b877285e154]  
 ./x [0x407e69]

Here is a sample traceback from a SEGV in user code:

Error: segmentation violation, address not mapped to object  
 rax 0000000005f45908, rbx 0000000000000001, rcx 00000000000187f9  
 rdx 00000000000187f9, rsp 00007fffcdaef9a0, rbp 00007fffcdaef9a0  
 rsi 00007fffcdaef9c4, rdi 00002ab2dd77e020, r8 00000000ffffffff  
 r9 0000000000000000, r10 0000000000000022, r11 0000000000000246  
 r12 0000000000000001, r13 00007fffcdaefae0, r14 0000000000000000  
 r15 0000000000000000  
 /lib64/libpthread.so.0 [0x2ab2dd1ebc10]  
 ./y(init_+0x1f) [0x4081bf]  
 ./y(MAIN_+0x9b) [0x407ffb]  
 ./y(main+0x40) [0x407f40]  
 /lib64/libc.so.6(__libc_start_main+0xf4) [0x2ab2dd468154]  
 ./y [0x407e69]  

There are too many compiler flags to remember all of their options. You can
get help in several places:

> man pgfortran

> pgfortran -fast -help – gives help on -fast

Full PDF manuals are online in (e.g)

/opt/pgi/11.2.0/linux86-64/2011/doc

Manuals are also available at:

http://www.pgroup.com/resources/docs.htm

What does this flag do?

Optimization is as much a user exercise as it is a compiler exercise. To see
what the compiler thinks of your code, compile using the –Minfo flag.

> pgfortran -fast -Minfo=ccff foo.f -o foo

Use the information generated by –Minfo to help identify coding issues and
locate places where code can be improved so the compiler can do an optimal
job on it.

> pgfortran -Minfo -help

What exactly is being optimized?

28

> ftn -fast -Mipa=fast –Minfo=ccff -S graphRoutines.f90

localmove:
 334, Loop unrolled 1 times (completely unrolled)
 343, Loop unrolled 2 times (completely unrolled)
 358, Generating vector sse code for inner loop
 364, Generating vector sse code for inner loop
 Generating vector sse code for inner loop
 392, Generating vector sse code for inner loop
 423, Generating vector sse code for inner loop

Use –Minfo to see which loops vectorize

Use –Mneginfo to see why things don’t vectorize

The –fast flag is the 90/90 solution for code optimization. That is, it
achieves about 90% of the possible performance for about 90% of the codes.

That means there are some additional areas that can be explored.

Interprocedural analysis can be helpful for C codes and Fortran codes
without interface blocks. (Interface blocks are to the language specification
what IPA is to the compiler)

> ftn -fast -Minfo -Mipa=fast,inline foo.f -o foo

***If compiling and linking are done in separate steps, you must be sure to
pass the IPA flag to the linker too.

IPA involves an additional pass of the compiler.

Additional compiler optimizations

The suggested usage for IPA is to apply –Mipa=fast globally

The –Mipa flag has a large number of options that may be helpful in
certain circumstances. These options are generally best applied to a
specific subroutine to address a specific issue.

A couple of the more interesting flags include:

-Mipa=libopt This allows recompiling and optimization of routines from
libraries using IPA information. If you make extensive use of libraries in
your code, try compiling those libraries with –Mipa=fast so that you have
the option of using IPA when you link your application to that library

-Mipa=safeall This declares that all unknown procedures are safe.

Additional IPA optimizations

Several memory management options are available and may be beneficial
depending on how your code accesses memory. Smartalloc tends to do a
better job managing memory then standard Unix malloc.

Smartalloc can make use of “big pages”. Using big pages helps to
minimize the number to TLB misses. This option tends to be helpful for
codes that do a big initial allocate and then manage their own memory.

> ftn -fast -Minfo -Mipa=fast,inline -Msmartalloc=huge foo.f -o foo

***-Msmartalloc must be used to compile main, and also to link the
program

Additional compiler optimizations

Inlining can have a significant impact on application performance. It’s
most dramatic effects tend to be on C++ codes which have many many
small functions.

Inlining can be done at several different points in the compilation.

-Minline/autoinline - during the regular compilation phase

-Mipa=inline - during the recompile for IPA

Inline libraries - created during the “make” process

Additional compiler optimizations

The auto inliner is for C/C++ only. This enables inlining functios
with the inline attribute. The suboptions control how the auto inliner
operates.

-M[no]autoinline
 Enable inlining of functions with the inline attribute.
 -Mautoinline is implied with the -fast switch. The options are:

 levels:n Inline up to n levels of function calls; the default
 is to inline up to 10 levels.

 maxsize:n Only inline functions with a size of n or less. The
 size roughly corresponds to the number of statements
 in the function, though the correspondence is not
 direct. The default is to inline functions with a
 size of 100 or less.

 totalsize:n
 Stop inlining when this function reaches a size of n.
 The default is to stop inlining when a size of 8000
 has been reached.

Use of -Minline/-Mextract to create an inline library. This works for
all languages(C/C++/FORTRAN). To create an inline library with
-Mextract do the following:
pgfortran -Mextract=lib:libfloat.il -c add.f90
pgfortran -Mextract=lib:libfloat.il -c sub.f90
pgfortran -Mextract=lib:libfloat.il -c mul.f90
pgfortran -Mextract=lib:libfloat.il -c div.f90

This creates an inline library name libfloat.il which can be used
during compliation as follows:
pgf90 -fast -Minline=libfloat.il -c -Minfo -Mneginfo
 driver.f90

Creating and Using Inline Libraries

The -Minfo messages for this compile are:

test:
 14, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 21, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 22, add inlined, size=2, file add.f90 (2)
 33, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 34, sub inlined, size=2, file sub.f90 (2)
 45, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 46, mul inlined, size=2, file mul.f90 (2)
 57, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 58, div inlined, size=2, file div.f90 (2)

As a result of inlining the functions add, sub, mul, and div the
compiler was then able to vectorize the loops that contained those
calls.

Use of -Mipa=inline to inline functions/subroutines. This works for all
languages(C/C++/FORTRAN). Create the library using the -Mipa=inline
option as follows:
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c add.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c sub.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c mul.f90
pgfortran -Mipa=fast,inline -Minfo -Mneginfo -c div.f90

ar cr libfloat.a add.o sub.o mul.o div.o

This creates a library named libfloat.a which can be used during compliation
as follows(need to use the libinline suboption):
pgf90 -fast -Mipa=fast,inline,libinline -c -Minfo -Mneginfo
 driver.f90
pgf90 -fast -Mipa=fast,inline,libinline -o d driver.o
 libfloat.a

The -Minfo messages for this compile are:
test:
 14, Generated an alternate loop for the loop
 Generated vector sse code for the loop
 21, Loop not vectorized/parallelized: contains call
 33, Loop not vectorized/parallelized: contains call
 45, Loop not vectorized/parallelized: contains call
 57, Loop not vectorized/parallelized: contains call
IPA: Recompiling driver.o: stale object file
test:
 0, Pointer c is only set via allocate statements
 Pointer b is only set via allocate statements
 Pointer a is only set via allocate statements
 Function add does not write to any of its arguments
 Function add does not reallocate any of its arguments
 Function add does not reassociate any of its pointer arguments
 Function add does not reallocate any global variables
 Function add does not reassociate any global pointers
 Function add does not read any global (common/module) variables
 Function add does not write any global (common/module) variables
 Function sub does not write to any of its arguments
 Function sub does not reallocate any of its arguments
 Function sub does not reassociate any of its pointer arguments
 Function sub does not reallocate any global variables
 Function sub does not reassociate any global pointers
 Function sub does not read any global (common/module) variables
 Function sub does not write any global (common/module) variables
 Function mul does not write to any of its arguments

There are a number of compiler options that offer the possibility of
significant performance improvement at the expense of accuracy. If you are
having numerical issues, you might tighten some restrictions.

-Kieee – floating point strictly conforms to IEEE 754 standard. (off by default)

-Ktrap – turns on the behavior of the processor when exceptions occur

-Mdaz – mode to treat IEEE denormalized input numbers as zero

-Mflushz – set SSE to flush-to-zero mode (on with –fast)

-Mfprelaxed - perform certain floating point operations using relaxed precision when it improves
the speed. (This is the default mode on most other vendor’s compilers)

Compiler optimizations and accuracy

There are three general techniques for using more then one core for a
computation. Of course, on large XT5 machines, all codes implement
parallelism through MPI.

While most codes are MPI everywhere, some codes benefit by using the
shared memory on the node through either automagic parallelizing by the
compiler or/and OpenMP. OpenMP compilation is invoked with the –mp
flag, automagic parallelization with the –Mconcur flag.

Environment variables which can effect OpenMP performance include:

OMP_SCHEDULE – can be static, dynamic, guided or auto

OMP_NUM_THREADS – specifies the number of threads to use

OMP_STACKSIZE – override the default stack size for new threads.

Using more then one core

40

Explicit Function Inlining
–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
 size:<n> | levels:<n>]

[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n
 statements (approximate)

levels:<n> Inline n levels of functions
For C++ Codes, PGI Recommends IPA-based

inlining or –Minline=levels:10!

41

SMP Parallelization
  –Mconcur for auto-parallelization on multi-core

 Compiler strives for parallel outer loops, vector SSE inner loops

 –Mconcur=innermost forces a vector/parallel innermost loop

 –Mconcur=cncall enables parallelization of loops with calls

•  –mp to enable OpenMP parallel programming model

 OpenMP programs compiled w/out –mp “just work”

 Starting in 7.0, two options for idle policy

  –Mconcur and –mp can be used together!

42

Miscellaneous Optimizations (1)

  –Mfprelaxed – single-precision sqrt, rsqrt, div performed
 using reduced-precision reciprocal approximation

  –lacml and –lacml_mp – link in the AMD Core Math Library

  –Mprefetch=d:<p>,n:<q> – control prefetching distance,
 max number of prefetch instructions per loop

  –tp k8-32 – can result in big performance win on some
 C/C++ codes that don’t require > 2GB addressing;
 pointer and long data become 32-bits

Fortran 2003 Features in Current PGI
 Compiler Release

IEEE_EXCEPTIONS module IEEE_ARITHMETIC module Allocatable Array
 Extensions

ISO_C_Binding c_f_pointer c_f_procpointer
c_associated Enumerators Procedure Pointers
Interface procedure Pass and Nopass Attribute allocatable scalars
move_alloc() Pointer Reshaping Square brackets
volatile attribute and stmt IMPORT statement iso_fortran_env module
Access to environment Length of names and statements
Optional Kind to Intrinsics Asynchronous I/O' Wait Statement
PENDING specifier for INQUIRE Access = 'stream’
POS specifier for INQUIRE IOSTAT kind in all i/o stmts SIZE kind in read/write stmts
 Allow NAMELIST w/internal file IEEE_ARITHMETIC large arrays
Classes Type Extension(not polymorphic) polymorphic entities
 type uses CONTAINS declaration Inheritance
EXTENDS_TYPE_OF intrinsic SAME_TYPE_AS intrinsic Typed allocation

Fortran 2003 Features in Current PGI
 Compiler Release

•  READ blank specifier READ pad specifier WRITE delim specifer
•  NEW_LINE intrinsic IS_IOSTAT_END intrinsic IS_IOSTAT_EOR intrinsic
•  SYSTEM_CLOCK COUNT_RATE is real abstract interfaces
•  Type-bound procedures PASS attribute NOPASS attribute

•  NON_OVERRIDABLE attribute PRIVATE and PUBLIC attributes
•  PRIVATE statement for type bound procedures deferred type-bound

 procedures
•  ABSTRACT types i/o keyword encoding
•  Decimal comma for i/o, dc, dp ASYNCHRONOUS attribute and stmt
•  IEEE_FEATURES module Max, Min take character
•  errmsg on allocate/deallocate Mixed component accessibility
•  Sourced allocation (non-polymorphic) Associate Construct
•  Sourced allocation (polymorphic types)

Fortran 2003 Remaining Features

•  deferred-character-length 11.0
•  generic & derived type the same 11.0
•  sourced allocation (deferred character) 11.0
•  PROTECTED attribute and stmt 11.0
•  stop stmt warns about FP exc. 11.0
•  rename user-defined operators 11.0
•  array constructor syntax 11.0
•  structure constructors 11.0
•  SELECTED_CHAR_KIND intrinsic 11.0

Compiler Release

Fortran 2003 Object Oriented Features

•  generic type-bound procedures 11.0
•  select type construct 11.0
•  unlimited polymorphic entities 11.0
•  typed allocation for unlimited polymorphic entities 11.0
•  sourced allocation for unlimited polymorphic entities 11.0
•  select type construct for unlimited polymorphic entities 11.0
•  deferred type parameters (requires MRC 15.2 & MRC 16.2.1) 11.8
•  sourced allocation (ploymorphic source type with

allocatable members 11.4
•  parameterized derived types (MRC 16.2.1) 11.7
•  final procedures 11.5

Compiler Release

Fortran 2003 I/O Features

•  i/o of inf and nan (fs#3962) 11.0
•  round i/o specifier, ru,rd,etc. (writes only) 11.0
•  non-default derived type I/O 11.x
•  non-default derived type I/O (type-bound procedures) 11.x
•  recursive I/O w/external file 11.x
•  recursive I/O w/internal file 11.x
•  SIGN= Specifier 11.0
•  NEXTREC, NUMBER, RECL, SIZE kind 11.0
•  DECIMAL in INQUIRE stmt 11.0
•  F2003 NAMELIST group entities 11.0

Compiler Release

AVX Support in 11.0

•  The next generation of processors from both Intel and AMD will
 support AVX instructions.

•  AVX doubles the width of the floating point registers to 256 bits
 and adds 3 operand instructions resulting in more then a 2X
 decrease in assembly language instructions in performance
 critical sections of code

•  AVX are vector instructions where one instruction operates on 8
 sp, or 4 dp words at the same time, effectively doubling the
 performance of the CPU.

•  Codes should be compiled with –fast for vectorization and –Minfo
 to get compiler feedback

•  PGI compiled codes can made use of the Intel AVX simulator

 Will track NVIDIA’s definition and evolution of the
CUDA C language for GPUs moving forward

  Implementation will proceed in phases
  Phase 1 prototype demonstration at SC10 in New Orleans (November)
  Phase 2 first production release in Q2 2011 with most CUDA C

functionality; not a performance release
  Phase 3 performance release in Q4 2011 leveraging multi-core and

SSE/AVX to implement low-overhead native parallel/SIMD execution

 Will eventually support execution of Device kernels
on NVIDIA CUDA-enabled GPUs as well

 PGI Unified Binary technology will enable one binary
that uses NVIDIA GPUs when present or defaults to
multi-core x86 if no GPU is present

Multicore + SSE/AVX Massively Parallel

…

 Process CUDA C as a native parallel programming
language for multi-core x86

  Inline Device kernel functions, translate chevron
syntax to parallel/vector loops, use multiple cores and
SSE/AVX instructions

 Execute each CUDA thread block using a single host
core, eliminate synchronization where possible

 Host Code: all PGI optimizations for Intel/AMD host
code will be supported

 Performance Goal: Well-structured CUDA C for multi-
core x86 programs approach the efficiency of the same
algorithm written in OpenMP

  NVIDIA TESLA C1060/C2050
  Lots of available performance ~1 TFlops peak SP
  Programming is a challenge
  Getting high performance is lots of work

  NVIDIA CUDA programming model and C for
CUDA simplify GPGPU programming
•  Much easier than OpenGL/DirectX, still challenging

  PGI’s CUDA Fortran provides an a Fortran
based analog to CUDA C

  PGI’s Accelerator Directive compilers for C and
Fortran provide a higher level, OpenMP style of
programming NVIDIA GPU’s.

AMD “Magny-Cours”

Emerging Cluster Node Architecture
Commodity Multicore x86 + Commodity Manycore GPUs

4 – 48 CPU Cores 240 – 1920 GPU/Accelerator Cores

Abstracted x64+Fermi Architecture

1-57

CUDA Fortran VADD Host Code

 subroutine vadd(A, B, C)
 use cudafor
 use kmod
 real(4), dimension(:) :: A, B
 real(4), pinned, dimension(:) :: C
 real(4), device, allocatable:: Ad(:), Bd(:), Cd(:)
 integer :: N
 N = size(A, 1)
 allocate(Ad(N), Bd(N), Cd(N))
 Ad = A(1:N)
 Bd = B(1:N)
 call vaddkernel<<<(N+31)/32,32>>>(Ad, Bd, Cd, N)
 C(1:N) = Cd
 deallocate(Ad, Bd, Cd)
 end subroutine

58

CUDA Fortran VADD Device Code

module kmod
 use cudafor
contains
 attributes(global) subroutine vaddkernel(A,B,C,N)
 real(4), device :: A(N), B(N), C(N)
 integer, value :: N
 integer :: i
 i = (blockidx%x-1)*32 + threadidx%x
 if(i <= N) C(i) = A(i) + B(I)
 end subroutine
end module

59

3 Aspects of GPU Programming

1.  Split code between Host and GPU
  CUDA and OpenCL – function level, done manually by the programmer
  Modern Compilers – can do this just as well as you can, and a lot faster, and

enable offloading of regions within functions

2.  Manage data allocation/movement between Host and Device
  CUDA and OpenCL – do this manually with API calls, one or more per argument

to the device kernel, host code nearly unrecognizable compared to original
  Modern Compilers – can do this almost as well you can, user-driven tuning is

required, but can and should be quick and easy

3.  Tune Device Kernels
  CUDA and OpenCL – this step is both time-consuming and difficult; must

optimize grid/thread geometry, optimize memory placement/accesses, etc
  Modern Compilers – can help a little here and make the code portable, but this

step is probably always going to be hard

Explicit programming (CUDA) vs.
implicit programming (directives)

CUDA:
 + Good performance with hand tuned kernels
 + Incremental porting to GPU
 - not portable to non-CUDA platforms
 - requires maintaining two sets of code
Directives:
 + Good performance possible
 + Incremental porting to GPU
 + portable to non-CUDA platforms including X64
 + requires only a single code source
 - Obscurity in what the compiler is actually doing
 - “Best practices” not clearly established – more data
 from user, vendor, and platform needed

PGI Accelerator Programming Model

  Built on lessons from 30 years of experience with vector machines
and 20 years of experience with SMP programming

  Directives to offload compute kernels to a GPU, manage data
movement between host and GPU, map loop parallelism onto a GPU

  Fortran 2003 and C99 today, eventually C++

  Programs remain 100% standard compliant and portable to other
compilers and HW

  Incremental porting/tuning of applications to x64+GPU

  Designed to enable development of applications that are performance
portable to multiple types of accelerators

Basic C code - Matrix Multiply
for x64 Single-core

void
computeMM(float C[][WB], float [][WA], float B[][WB], int hA, int wA, int wB)
{
 int i, j, k;

 for (i = 0; i < hA; ++i) {
 for (j = 0; j < wB; ++j) {
 C[i][j] = 0.0;
 }
 }
 for (i = 0; i < hA; ++i) {
 for (k = 0; k < wA; ++k) {
 for (j = 0; j < wB; ++j) {
 C[i][j] =+= A[i][k]*B[k][j];
 }
 }
 }
}

GPU Code

Host Code
NVIDIA CUDA C cudaMalloc(&A,bytes);

cudaMemcpy(A,data,bytes);
...
sgemm<<<dim3(m/16,n/16),dim3(16,16)>>>

 (A,la,B,lb,C,lc);
...

__global__ void sgemm(float *A, int la,
 float* B, int lb, float* C, int lc)
{
 int tx=threadIdx.x, ty=threadIdx.y;
 int i = blockIdx.x*16+tx;
 int j = blockIdx.y*16+ty;
 float Cij = C[i+j*lc];
 __shared__ float Ab[16][16];
 __shared__ float Bb[16][16];
 for(int kb=0; kb<lc; kb+=16){
 Ab[tx][ty] = A[i+la*(kb+ty)];
 Bb[tx][ty] = B[kb+tx+lb*(j)];
 __syncthreads();
 for(int k=0; k<16; ++k)
 Cij += Ab[tx][k]*Bb[k][ty];
 __syncthreads();
 }
 C[i+j*lc] = Cij;
}

PGI Accelerator
Program Execution Model

  Host
  executes most of the program

  allocates accelerator memory

  initiates data copy from host memory to accelerator

  sends kernel code to accelerator

  queues kernels for execution on accelerator

  waits for kernel completion

  initiates data copy from accelerator to host memory

  deallocates accelerator memory

  Accelerator
  executes kernels, one after another

  concurrently, may transfer data between host and accelerator

Accelerating an Application

•  Given that the app
 meets the
 constraints
 discussed, simply
 surround region to be
 accelerated with
 directives:

•  Compile for GPU

Produces accelerated
 kernels with correct
 data movement

Compiler feedback
 important for tuning

!$acc region
 <code loops>
!$acc end region

pgfortran –fast
-Minfo=accel
-ta=nvidia

  PGI 2010 automatically generates
 code for NVIDIA GPUs

  Generated code takes into account
 corner cases

  Block dimension chosen by the
 compiler is 16x16 threads

  Each thread of a given block computes
 one point in ‘C’ output matrix

  No use of shared memory for A & B
 accesses

  Code needs to structured to enable
 « cache » accesses to A & B

  Single binary for both optimized
 versions for multicore and GPU

PGI Directive-based Matrix
Multiply for x64+GPU

void
computeMM(float C[][WB], float [][WA],
 float B[][WB], int hA,
 int wA, int wB)
{
 int i, j, k;

#pragma acc region
{
 for (i = 0; i < hA; ++i) {
 for (j = 0; j < wB; ++j) {
 C[i][j] = 0.0;
 }
 for (k = 0; k < wA; ++k) {
 for (j = 0; j < wB; ++j) {
 C[i][j]+=A[i][k]*B[k][j];
 }
 }
 }
}
}

C code

PGI Accelerator
Compilers

void saxpy (float a,
float *restrict x,
float *restrict y, int n){
#pragma acc region
{
 for (int i=1; i<n; i++)
 x[i] = a*x[i] + y[i];
}
}

saxpy:
 …
 movl (%rbx), %eax
 movl %eax, -4(%rbp)
 call __pg_cu_init
 . . .
 call __pg_cu_alloc
 …
 call __pg_cu_uploadp
 …
 call __pg_cu_paramset
 …
 call __pg_cu_launch

 …
 Call __pg_cu_downloadp
 …

Host x86 Code
GPU/Accelerator Code

static __constant__ struct{
 int tc1;
 float* _y;
 float* _x;
 float _a;
 }a2;
extern "C" __global__ void
pgi_kernel_2() {
 int i1, i1s, ibx, itx;
 ibx = blockIdx.x;
 itx = threadIdx.x;
 for(i1s = ibx*256; i1s < a2.tc1; i1s += gridDim.x*256){

 i1 = itx + i1s;
 if(i1 < a2.tc1){
 a2._x[i1] = (a2._y[i1]+(a2._x[i1]*a2._a));
 }
 }
}

+

Unified HPC
Application

compile

link

execute … with no change to existing makefiles, scripts,
programming environment, etc

pgcc –ta=nvidia

Refinements: Loop Schedules
 Accelerator kernel generated

 26, #pragma acc for parallel, vector(16)
 27, #pragma acc for parallel, vector(16)

  vector loops correspond to threadidx indices

  parallel loops correspond to blockidx indices

  this schedule has a CUDA schedule:

<<< dim3(ceil(N/16),ceil(M/16)),dim3(16,16) >>>

 Compiler strip-mines to protect against very long
loop limits, generates clean-up code for arbitrary loop
 bounds, etc

 Syntax supports any legal CUDA schedule

Refinements: Data Motion

 !$acc region copyin(a(1:m,1:n)), copyout r
 do j = 2,n-1 ! Update interior points

 do i = 2,m-1
 r(i,j) = a(i,j) * 2.0

 enddo
 enddo
 !$acc end region

  copyin changes default copyin procedure

  copyout changes default copyout procedure

 By default, compiler moves only data that is used

 E.g. for computing on non-halo regions, it is more
 efficient to move entire array rather then have the
 compiler generate a move for each column/row

Refinements: Leaving Data on GPU

 Subroutine magma (A, B)
 real(4), dimension(:,:) :: A, B

 !$acc reflected (A,B)

  reflected is a new directive in PGI 11.0

  reflected requires visibility of the caller (module or
 interface block)

  Instructs the compiler that the data is already on the
 GPU

 Starts to help programmer work around the “no stack
 pointer” issue

 Replaces trying to get the compiler to inline called
 routines

% pgfortran -fast -ta=nvidia –Minfo=accel mm.f
...
 62, Loop is parallelizable
 64, Loop carried dependence of 'C' prevents parallelization
 Loop carried backward dependence of 'C' prevents vectorization
 66, Loop is parallelizable
 Accelerator kernel generated
 62, #pragma acc for parallel, vector(16) /* blockIdx.y threadIdx.y */
 64, #pragma acc for seq(16)
 Cached references to size [16x16] block of 'A'
 Cached references to size [16x16] block of 'B'
 66, #pragma acc for parallel, vector(16) /* blockIdx.x threadIdx.x */
 Using register for 'C'
 CC 1.3 : 27 registers; 2264 shared, 24 constant,
 0 local memory bytes; 50% occupancy
...

Compiler-to-User Feedback

Optional Region Clauses for Tuning
Data Allocation and Movement

See www.pgroup.com/accelerate for a complete specification
of the PGI Accelerator programming model and directives

Clause Scope
if (cond) region
copy (list) region, declaration
copyin (list) region, declaration
copyout (list) region, declaration
local (list) region, declaration
mirror (list) region, declaration (Fortran)
reflected (list) declaration (Fortran)

Optional Loop Directive Clauses for
Tuning Kernel Schedules

Clause Scope

host [(width)] loop
parallel [(width)] loop
seq [(width)] loop
vector [(width)] loop

private (list) loop
kernel loop
unroll (width) loop
cache (list) loop

See www.pgroup.com/accelerate for a complete specification
of the PGI Accelerator programming model and directives

 change = tolerance + 1.0
!$acc data region local(newa(1:m,1:n)) &
 copy(a(1:m,1:n))
 do while(change > tolerance)
 change = 0
!$acc region
 do i = 2, m-1
 do j = 2, n-1
 newa(i,j) = w0 * a(i,j) + &
 w1 * (a(i-1,j) + a(i,j-1) + &
 a(i+1,j) + a(i,j+1)) + &
 w2 * (a(i-1,j-1) + a(i-1,j+1) + &
 a(i+1,j-1) + a(i+1,j+1))
 change = max(change,abs(newa(i,j)-a(i,j)))
 enddo
 enddo
 a(2:m-1,2:n-1) = newa(2:m-1,2:n-1)
!$acc end region
 enddo
!$acc end data region

Device-Resident Data Example

PGI Accelerator vs CUDA

  The PGI Accelerator programming model is a high-level implicit
programming model for x64+GPU systems, similar to OpenMP
for Multi-core x64:

  Offload compute-intensive loops and code regions using simple
compiler directives

  Directives are Fortran comments and C pragmas, programs
remain 100% standard-compliant and portable

  Makes GPGPU programming and optimization incremental and
accessible to application domain experts

  Supported in both the PGI F2003 and PGCC C99 compilers

Reference Materials

  PGI Accelerator programming model – supported for x64+NVIDIA
targets in the PGI Fortran 95/03 and C99 compilers
  http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf

  CUDA Fortran – supported on NVIDIA GPUs in PGI Fortran 95/03
compiler
  http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf

  Understanding the CUDA Data Parallel Threading Model
  http://www.pgroup.com/lit/articles/insider/v2n1a5.htm

Copyright Notice

© Contents copyright 2010, The Portland Group,
 Inc. This material may not be reproduced in any
 manner without the expressed written
 permission of The Portland Group.

PGFORTRAN, PGF95, PGI Accelerator and PGI Unified Binary are trademarks; and PGI, PGCC, PGC++, PGI Visual
 Fortran, PVF, PGI CDK, Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks
 of The Portland Group Incorporated. Other brands and names are the property of their respective owners.

PGCC
+

Vectorization
+

IPA
+

OpenMP

i-loop parallelized
+

k-loop vectorized

Parallel C code - Matrix Multiply
for a Multi-core x64 Host

Parallel/Vector
SSE code on
Multi-core x64
SMP node

void
computeMM(float C[][WB], float [][WA],
 float B[][WB], int hA, int wA,
 int wB)
{
 int i, j, k;
#pragma omp parallel
{
#pragma omp for
 for (i = 0; i < hA; ++i) {
 for (j = 0; j < wB; ++j) {
 C[i][j] = 0.0;
 }
 }
#pragma omp for
 for (i = 0; i < hA; ++i) {
 for (k = 0; k < wA; ++k) {
 for (j = 0; j < wB; ++j) {
 C[i][j]+=A[i][k]*B[k][j];
 }
 }
 }
}
}

C code

Basic CUDA C Matrix Multiply Kernel
for an NVIDIA GPU

WA

WB WA

HA

WB

HA

Block size

  Here block size is equal to 64
  Each thread of a given block computes one

 point in ‘C’ output matrix
  Each thread of a given block reads same line

 of ‘A’ matrix
  Each thread of a given block read a different

 column from ‘B’ matrix

CUDA-C code

extern "C" __global__ void
mmkernel(float* A,float* B, float* C,

 int wA,int wB)
{

 int i = blockIdx.y;
 int j = blockIdx.x*64+threadIdx.x;

 float sum = 0.0;
 for(int k = 0; k < wA; ++k)
 sum += A[wA*i+k] * B[k*wB+j];
 C[i*wB+j] = sum;
}

  Here thread block size is equal to 128
  Each thread of a given block computes

 2 points in ‘C’ output matrix
  Computation performed on 16x16 data

 tiles of elements from ‘A’ and ‘B ’
  Each thread of a given block reads 2

 elements of ‘A’ and 2 elements of ‘B’
 and stores them in shared memory

  Each thread of a given block waits for
 other threads of the same block to
 complete caching of ‘A’ and ‘B’ into
 shared memory before starting any
 computation

  The j-loop has been unrolled by 2
 to take advantage of re-using same
 ‘at’ element for different computations

  The inner k-loops will be completely
 unrolled (16x) by nvcc

  Each thread of a given block waits for
 other threads to complete computation
 before caching next 16x16 tiles of ‘A’
 and ‘B’ matrices

Optimized CUDA-C code

extern "C" __global__ void
c_mmul_kernel(float* c, float* a, float* b,
 int WA, int WB, int WC)
{
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 int is = blockIdx.x*16, i = is + tx;
 int js = blockIdx.y*16, j = js + ty;
 __shared__ float at[16][16], bt[16][16];

 float sum0 = 0.0, sum1 = 0.0;
 for (int ks = 0; ks < WA; ks += 16){
 at[ty][tx] = a[ks+tx+WA*(ty+js)];
 at[ty+8][tx] = a[ks+tx+WA*(ty+js+8)];
 bt[ty][tx] = b[is+tx+WB*(ty+ks)] ;
 bt[ty+8][tx] = b[is+tx+WB*(ty+ks+8)] ;
 __syncthreads();
 for (int k = 0; k < 16; ++k)
 sum0 += at[ty][k]*bt[k][tx] ;
 for (int k = 0; k < 16; ++k)
 sum1 += at[ty+8][k]*bt[k][tx] ;
 __syncthreads();
 }
 c[i+WB*j] = sum0;
 c[i+WB*(j+8)] = sum1;
}

WA

WB
WA

HA

WB

HA

Optimized CUDA C Matrix
 Multiply Kernel principle

  Execution of one block of threads
  Simplified example with block size equals to 8x4 instead of 16x8
  What about corner cases, i.e. matrix size not multiple of block dimension?

Host-side CUDA C Matrix Multiply
GPU Control Code

cudaMalloc(&ap, memsizeA);
cudaMalloc(&bp, memsizeB);
cudaMalloc(&cp, memsizeC);

cudaMemcpy(ap, a, memsizeA, cudaMemcpyHostToDevice);
cudaMemcpy(bp, b, memsizeB, cudaMemcpyHostToDevice);
cudaMemcpy(cp, c, memsizeC, cudaMemcpyHostToDevice);

dim3 threads(16, 8);
dim3 blocks(hA/16, wB/16);
c_mmul_kernel <<<blocks,threads>>>(ap, bp, cp,
 wA, wB, wC);

cudaMemcpy(C, cp, memsizeC, cudaMemcpyDeviceToHost);

cudaFree(ap);
cudaFree(bp);
cudaFree(cp);

Compilers & Programming Models Must Evolve
for Each New Generation of HPC Hardware

Expect 20M Core systems in the Next Few Years

HPC System
Processor

Cores

MPI

MPI+OMP

MPI+OMP+ACC

  NVIDIA TESLA C1060 and C2050 (Fermi)
  Lots of available performance 1 - 2 TFlops peak SP
  Programming is a challenge
  Getting high performance is lots of work

  NVIDIA CUDA programming model simplifies
GPGPU programming
  CUDA C much easier than OpenGL, still challenging
  PGI CUDA Fortran provides a Fortran solution

  A PGI Goal: do for GPU programming what
OpenMP did for Posix Threads, make it easily
approachable by application domain experts

PGI Directive-based Matrix
Multiply for Multi-core x64+GPU

void
computeMM(float C[][WB], float [][WA],
 float B[][WB], int hA,
 int wA, int wB)
{
 int i, j, k;

#pragma acc region
#pragma omp parallel
{
 for (i = 0; i < hA; ++i) {
 for (j = 0; j < wB; ++j) {
 C[i][j] = 0.0;
 }
 for (k = 0; k < wA; ++k) {
 for (j = 0; j < wB; ++j) {
 C[i][j]+=A[i][k]*B[k][j];
 }
 }
 }
}
}

C code

Parallel/Vector
SSE code on
Multi-core x64
SMP node

Autoparallelized
Multi-Dimension
code on GPU void

computeMM(float C[][WB], float [][WA],
 float B[][WB], int hA, int wA,
 int wB)
{
 int i, j, k;
#pragma acc region
#pragma omp parallel
{
#pragma omp for
 for (i = 0; i < hA; ++i) {
 for (j = 0; j < wB; ++j) {
 C[i][j] = 0.0;
 }
 }
#pragma omp for
 for (i = 0; i < hA; ++i) {
 for (k = 0; k < wA; ++k) {
 for (j = 0; j < wB; ++j) {
 C[i][j]+=A[i][k]*B[k][j];
 }
 }
 }
}
}

C code

PGCC
+

PGI Accelerator
+

IPA
+

Vectorization
+

OpenMP
+

PGI Unified Binary

Maybe OpenCL is Easier?

OpenCL code
__kernel void
matrixMul(__global float* C,
 __global float* A, __global float* B,

 __local float* As, __local float* Bs)
{
 int bx = get_group_id(0);
 int tx = get_local_id(0);
 int by = get_group_id(1);
 int ty = get_local_id(1);
 int aEnd = WA * BK_SZ * by + WA - 1;
 int a = WA*BK_SZ*by ;
 int b = BK_SZ * bx
 float Csub = 0.0f;

 for (;a <= aEnd; a += BK_SZ, b += BK_SZ*WB) {
 As[tx + ty * BK_SZ]=A[a + WA * ty + tx];
 Bs[tx + ty * BK_SZ]=B[b + WB * ty + tx];
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int k = 0; k < BK_SZ; ++k)
 Csub+=As[k+ty*BK_SZ]*Bs[tx+k*BK_SZ];
 barrier(CLK_LOCAL_MEM_FENCE);
 }

 int c = get_global_id(1)*get_global_size(0);
 c = c + get_global_id(0);

 C[c] = Csub;

}

  Here WorkGroup size is 16x16
  Each WorkItem of a given WorkGroup

 computes one point in ‘C’ output
 matrix

  Computation is performed in sub-
 arrays of 16x16 elements of ‘A’ &’B’
 matrices

  Each WorkItem of a given WorkGroup
 reads one element of ‘A’ & ‘B’ matrices
 and stores them in local memory

  Each WorkItem of a given WorkGroup
 waits for other WorkItems of same
 WorkGroup to complete caching of ‘A’
 & ‘B’ matrices into local memory
 before starting any computation

  Each WorkItem of a given WorkGroup
 waits for other WorkItems to complete
 computation before caching next
 16x16 sub-array of ‘A’ & ‘B’ matrices

OpenCL Matrix
 Multiply Kernel

 for GPU

OpenCL Host-side C Control Code
Step1/3: Platform capability query, context creation,

command queue creation

ciErrNum = oclGetPlatformID(&cpPlatform);
...
ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
...
ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
...
cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
...

 ciErrNum |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);

cdDevices = (cl_device_id*) malloc(szParmDataBytes);

clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, szParmDataBytes, cdDevices, NULL);

cl_device_id device = cdDevices[0];
commandQueue = clCreateCommandQueue(cxGPUContext, device, 0, &ciErrNum);
...

OpenCL Host-side C Control Code
Step2/3: Program Building, Kernel creation, Resources

allocation, argument passing, kernel enqueueing

char *source = loadProgSource("matrixMul.cl", header, &program_length);
...
cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source,
 &program_length, &ciErrNum);
...
ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-mad-enable", NULL, NULL);
...
multiplicationKernel = clCreateKernel(cpProgram, "matrixMul", &ciErrNum);
...
d_A = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,

 mem_size_A, &ciErrNum);
d_B = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 mem_size_B, h_B_data, NULL);
d_C = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, mem_size_C, NULL,NULL);

clSetKernelArg(multiplicationKernel, 0, sizeof(cl_mem), (void *) &d_C);
clSetKernelArg(multiplicationKernel, 1, sizeof(cl_mem), (void *) &d_A);
clSetKernelArg(multiplicationKernel, 2, sizeof(cl_mem), (void *) &d_B);
clSetKernelArg(multiplicationKernel, 3, sizeof(float) * BK_SZ *BK_SZ, 0);
clSetKernelArg(multiplicationKernel, 4, sizeof(float) * BK_SZ *BK_SZ, 0);
 ...
size_t localWS[] = {BLOCK_SIZE, BLOCK_SIZE};
size_t globalWS[] = {WC, HA};

clEnqueueNDRangeKernel(commandQueue, multiplicationKernel, 2, 0, globalWS, localWS,
 0, NULL, &GPUExecution);

OpenCL Host-side C Control Code
Step3/3: Kernel execution, results copy, resources

deallocation

…
 clFinish(commandQueue);

clEnqueueReadBuffer(commandQueue, d_C, CL_FALSE, 0, mem_size_C,
 h_C, 0, NULL, &GPUDone);
clWaitForEvents(ciDeviceCount, GPUDone);

clReleaseMemObject(d_A);
clReleaseMemObject(d_C);
clReleaseMemObject(d_B);

 clReleaseEvent(GPUExecution);
 clReleaseEvent(GPUDone);

clReleaseKernel(multiplicationKernel);
clReleaseCommandQueue(commandQueue);
clReleaseProgram(cpProgram);
ciErrNum = clReleaseContext(cxGPUContext);

HPC Hardware Trends
Today: Clusters of Multicore x86

Tomorrow? Clusters of Multicore x86 + Accelerators

Top
500

